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The axisymmetric stationary flow of a supersonic stream of nonviscous gas past 
a pointed body of revolution, the curvature of whose meridional curve isnonzero 
at the vertex of the body, is considered. It is shown that close to the body sur- 
face the derivatives of the specific entropy S = S’(s, 5) and the tangent velo- 
city component of gas particles u = u (s, 5) with respect to 6 = n / s (where 
II is the distance from the vertex of the body along the meridional curve and s 
is the distance along the normal to the surface of the body) are of the order of 

5 -vr, i.e. the body surface is singular. 
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1. Let US consider the axisymmetric steady flow at Mach number M, > 1, velocity 

V o. , etc. (see Fig. l), past a pointed body of revolution of a supersonic stream of non- 
viscous gas. We introduce cylindrical coordinates x and r with the axis OX that coin- 

cide with the axis of symmetry of the body ,and the coordinates s and n used in the theory 

of boundary layers. The streamlined body surface is defined by the equation r = rb (s), 
dra 1 G!S = sin 8, where 8 is the angle between the tangent to the meridian curve and 
the axis Ox and de I ds = -SC, where X is the curvature of the meridian curve. Euler’s 

equations,of continuity and energy for steady flows arising at the intersection of a homo- 
geneous stream of shock waves, can be transformed with the use of Bernoulli’s integral 
to a form in which the velocity V of gas particles and the specific entropy S are the 
unknown functions. The analogous conversion for conical streams of gas is made in El]. 

For the axisymmetric problem, where s and < = n / s are taken as independent va- 
riables, the transformed equations are of the form 

(1.1) 

as [(I +x@) (u sin 0 + u cos 9) + (rb + Q 03s 9) XVI = 9 
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(1.3) 

Here I( and v are components of v in the direction of increase of s and n , respect- 
ively, T = T (8, i) is the absolute temperature, and a = a (S, i) is the speed of sound 
which are given functions of their own arguments, where i = i, + l/a (~2 - v,*) is 

the specific enthalpy. The condition of separation- free flow over the surface ofthe body 
is of the form v = 0, E = 0. At the bow shock wave, defined by the equation ‘b = 

‘b (8) (see Fig. l), conditions of compatibility which are not adduced here, must be satis- 
fied. The stream flowing past the body is assumed to be supersonic, therefore close to 

the vertex of the body the flow is almost conical, i. e. when s --f 0 

u (% C) --, ur (5), v (s, 5) --f vr (5), S (s, f) --, Sr = const 

where ur, vr, S, are parameters of conical flow around a cone with the vertex half-angle 
Cl0 (see Fig. 1). 

2, Let us consider Eq. (1.3). We substitute the variable 6 = 6’lz for f , then (1.3) 
may be written in the form 

v(ifx@J---u as a ‘--s, 

26 ae+ 
USX 4 =O 

( > (2.1) 

where St, = conat is the value of entropy at the surface of the body. Passing in (2.1) 
to the limit with E tending to zero, we obtain 

(2.2) 

Here all functions are taken for E = 0, i.e. on the body surface. Solving Eq. (2.2) for 

(8s 1 %)p_s~ we obtain 
as 

( j K,t=O 
where c and so are constants. 

‘“.exp[S + $)$I 
(2.3) 

Q 

We now find au I 36 for E = 0 from Eq. (1.1). Passing to the limit at 5 + 0, we 
obtain from (1.1) the relation 

$ (uz_-a’)s~-_~2~ I 1 -aa2sinb30 

from which follows 
ijv/a~+-u for s+ 

From this and from formula (2.3) we find that 

as ( ) aE &lo - s for r-+0, 

If it can be shown that (@S 1 L%~&‘)_,+,, # 0, then this will mean that the constant 
c in formula (2.3) is nonzero, and that in the vicinity of the body surface there is a layer 

where S - Sb _ E - f”’ L (n / #ffa (2.5) 
To show that (awadE),=,, # 0, we establish a system of equations for the functions 

(2.4) 0 (E = 5 = 0) 
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(Finding u$, v,, S, is of interest in itself,since these functions represent the effect of 
thequantity x0 = x J_s on the field of flow). To determine %, u,, sI , it is necessary 
to solve the linear boundary value problem, in which the condition of flow around the 
body and at the bow shock wave must be satisfied. For s = 0 the “free parameter” of 

the problem is the curvature of the bow shock wave meridian curve whose choice must 
be such that the condition u, = 0 and 6 = 0 of flow around the body is satisfied. The 

expression for S, has the form 7 

(2.6) 

where s,, = const; ulr vl are parameters of conical flow around a cone with the vertex 
half-angle OO; E = go is the equation of a cone touching the shock wave at the vertex 
of the body. Calculations showed that Sss # 0, in particular in the case of a perfect gas: 

Szs = - 3/2 X, ctg 0, cp for M, 4 00, y - 1 

where cp is the specific heat of the gas at constant volume, Y is the adiabatic exponent. 

Since dv,ld5 - - UI for t --+ 0 (see (2.4)), it follows from formula (2.6) that 

S,(?J = liis$- - izJ’ - 5, C-+6 

Differentiating this equation with respect to E, we obtain 

Q. E. D. 
From Eq. (1.2), for E - 0 follows that the term T (1 + x 5s) aSl6~ of order c-“‘, 

may be compensated for only by the term c” of the derivative au/ag. This means that 

au/a< - i-“’ when r; -_) 0. 

Thus, the following result is obtained. 

If there exists a unique solution of the problem of an axisymmetric supersonic flow 
past a pointed body of revolution whose second derivatives with respect to s and < = 

n / s are continuous in a certain area around the vertex of the body, then in the case of 

x,, # 0 the surface of the streamlined body is singular, in its vicinity au / at, as/ % - 
c-‘lz or aujan, &SJ& _ n-‘ia when n - 0 and s has a fixed value. 

REFERENCE 

1. Bulakh, B. M., Nonlinear conical flows of gas. MOSCOW, “Nauka”, 1970. 

Translated by M. S. 


